Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

نویسندگان

  • Sh Bazrafkan
  • K Kazemi
چکیده

BACKGROUND Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue. METHODS In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. Each method is introduced and discussed. Then, the optimized model is prepared for numerical simulations. In this paper, the finite element method is used for solving the diffusion equation numerically. RESULTS Diffusion equation was solved for realistic human head model using finite element approach for a point light source and time resolved case. The photon intensity distribution in different head layers has been shown and the intensity orientation via the CSF layer has been illustrated. CONCLUSION Simulating the photon transformation inside the tissue is essential for investigating the NIRS imaging technique. The finite element approach is a fast and accurate method for simulating this fact. The time resolved approach of this technique could illustrate the photon migration and intensity orientation in the tissue for time dependent light sources in tissues.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling Time Resolved Light Propagation Inside a Realistic Human Head Model

Background: Near infrared spectroscopy imaging is one of the new techniques used for investigating structural and functionality of different body tissues. This is done by injecting light into the medium and measuring the photon intensity at the surface of the tissue.Method: In this paper the different medical applications, various imaging and simulation techniques of NIRS imaging is described. ...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

Near-infrared light propagation in an adult head model. I. Modeling of low-level scattering in the cerebrospinal fluid layer.

Adequate modeling of light propagation in a human head is important for quantitative near-infrared spectroscopy and optical imaging. The presence of a nonscattering cerebrospinal fluid (CSF) that surrounds the brain has been previously shown to have a strong effect on light propagation in the head. However, in reality, a small amount of scattering is caused by the arachnoid trabeculae in the CS...

متن کامل

Towards real time diffuse optical tomography:

Parameter recovery in diffuse optical tomography is a computationally expensive algorithm, especially when used for large and complex volumes, as in the case of human brain functional imaging. The modeling of light propagation, also known as the forward problem, is the computational bottleneck of the recovery algorithm, whereby the lack of a real-time solution is impeding practical and clinical...

متن کامل

کاربرد روش معادله سهموی در تحلیل مسائل انتشار امواج داخل ساختمان

With the rapid growth of indoor wireless communication systems, the need to accurately model radio wave propagation inside the building environments has increased. Many site-specific methods have been proposed for modeling indoor radio channels. Among these methods, the ray tracing algorithm and the finite-difference time domain (FDTD) method are the most popular ones. The ray tracing approach ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2014